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Department of Physics and Astronomy,

University of Maryland,
College Park. Maryland 20742

ABSTRACT

We have studied the parametric instabilities of electron

cyclotron waves in the 'BT)ring and Ip) the large tokamaks

eg. PLT. In the EBT, the electron cyclotron pump of finite

wavenumber 1% decays into two Bernstein modes at the second

harmonic cyclotron layer and can account for the heating of 4

the ring in the initial phase. The coupling coefficient

for this decay vanishes for a dipole pump, whereas the

convective threshold with finite k, is -200 W/ . For large

tokamaks, the convective threshold for various decay channels

turns out to be >200 KW/cu 2 at 3mm wavelength.
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I. INTRODUCTION

The recent developments of powerful microwave sources in the millimeter

range have aroused substantial efforts on the electron cyclotron heating of

large devices, eg., Elmo bumpy torus, tokamak and mirrors. In the Elmo

1bumpy torus (EBT) the microwaves are substantially absorbed at the second

harmonic cyclotron layer (wo = 2Wc) and a hot electron ring with several

keV temperature is formed. No satisfactory explanation of how the ring

is formed is available so far. Here we examine a possible parametric in-

stability at the second harmonic which may play a role in the acceleration

of the high energy electrons.

In the case of tokamak2'3, the experiments on electron cyclotron

heating of ISXB, TM-3, Tuman-2 and other devices have proved promising

4
with almost a hundred percent power absorption efficiency. Ott et al.

5
and Eldridge et al. have predicted the absorption efficienty of 100% for

the ordinary and extraordinary modes in PLT on the basis of linear theory

of cyclotron absorption. The presently employed power densities for tokamak

heating (< 1 KW/cm 2) at electron cyclotron frequency are far too low to

excite any parametric processes. Nevertheless the use of higher power

dnesities in future experiments might initiate such processes. An estimate

of these effects is necessary for the prediction of the heating rate.

Ott et al.4 have recently studied the parametric instabilities of the

ordinary pump wave in PLT on the low magnetic field side of the torus;

the parametric instabilities of the extraordinary mode have been omitted

on the ground that on the inner side of the torus, from where this mode

is launched, the electrostatic high frequency modes possess frequencies

greater than that of the pump. The two channels of decay viz, resonant

decay into upper hybrid and ion cyclotron waves and nonresonant decay into
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electron Bernstein mode have been studied. The threshold powers for these

channels are greater than 200 KW/cm 2, hence they are unimportant. Elder

and Perkins have investigated the parametric decay of the extraordinary

mode, launched from the outside of the torus, into ion acoustic and Langmuir

waves. The threshold power for this decay is very large: powers of the

order of 350 MW are required for its onset in PDX device.

In this paper, we have investigated the parametric instabilities of

electron cyclotron waves I) at the second harmonic cyclotron layer in EBT

and II) at the cyclotron harmonic in PLT. In the EBT, the pump wave could

decay into two Bernstein waves which possess slow group velocities and the

decay channel should have lowest convective threshold. In the case of PLT,

we shall match the frequency of the pump to the cyclotron frequency at the

center of the torus (x=fO) and would be interested in the parametric in-

stabilities in the vicinity of the center. The extraordinary mode launched

from the inside of the torus (x=-r0) could decay into i) two lower hybrid
2 2 2 n

waves, ii) lower hybrid and ion cyclotron waves (for wc < < 2w ) and
c p c2 2 2

iii) lower hybrid and quasimodes (for wc < w < 2w2) on the innerside of thec p c

torus. The ordinary mode launched from the outside of the torus (xfr o) could

decay into i) two lower hybrid waves, ii) Bernstein and quasimodes, iii) upper
2 2

hybrid and ion cyclotron modes and quasimodes (for w < w 2). The last
p c

channel is, however, possible in the low density region hence we would ignore

it.

In Section II we have obtained the coupling coefficient for the decay

of a finite wavenumber (k o0) electron cyclotron pump around wo = 2wc into

two Bernstein modes in EBT by solving the Vlasov equation for electrons in

the guiding center coordinates. The coupling coefficient vanishes for ko-0.

Following Liu 7, the convective threshold for the instability has been ob-

tained. In Section III, we have studied the decay instability of electron

*



cyclotron pump (wo W= c in a tokamak by employing fluid theory, which is

applicable for long wavelength decay modes. A discussion of results is

given in Section IV.
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II. TWO BERNSTEIN MODE DECAY IN EBT

We consider the propagation of an extraordinary pump wave

exp - i(wt - kox) (1)

into the mirror midplane of EBT, transverse to the direction of static magnetic

field ^ z;E = -i E /W(W2 - ), E =0, B =k CE/ w, B
s z; Eox o c oz oz 0 oy 0 ox

B =0O,
oy

2 2 1/2

k= 0[1---R .- (2)2 2 2 2
0 0 p c

and w and wc are the electron plasma and cyclotron frequencies. The densityp

gradient is along x axis and the pump frequency is close to 2Wc . The pump

wave decays into two electrostatic waves E(w,k) = -V[ exp - i(wt - )]

and E = -V[ 1exp -i( It - k1 • .)] where wi = - Wo = k - k0

The response of electrons to these fields is governed by 
the Vlasov equation

8

f z f + * f + f T 'f + f + ff+--+8 + ; - eEz -+ Kg + y -= 0 (3)
t m 3z a 3P z ap 9a g Yg ay

where - my2 /2w is the magnetic moment, 8 is the gyrophase angle, v is the
I cI

perpendicular velocity, -e and m are the electronic change and mass, respectively,

tc eBs/mc and X - vi x Wc/W are the guiding center coordinates. Using

the equation of motion, one can write

JT

e I  v vI/W c

W + °-----z + e (E T sine - E T COOe)
c mc am x y

II
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eE k
e -- xw Vyx x g 2 L c m u ) w

g2 c

where the superscript T refers to the total field. Now we express the total

electric field and the distribution function as

_±T -i()0 ko0x g)I n 0E E- e eil n
o 11

n
-,- -,-

-i(wt -kx i )
ik~e x [ ein( -

nn

-i±i e-i(W t g) ein( 61) (
n

n

+fei( t - k • x0 ) -0 x g e 6) f

n

-i(Wt - x 9) ein(O - 61) f

+g e 
e - 6

n 
n

and also

ev E -i(w t- kx i6
21 o10 0g -1602oe • oe ( e o

c n

Mj -i(Wt -. )
+ o 0 +iee o) ein(B - 6 )Jn+l n +eee 1Jn

-i(w It k x g) n e(
+i I e In(6)

W + eE 0 e f@o -i6 i6
c 2- e n-e n+ e

-e~mot - koX ) sk -i(0t - kI) ein(-

eg - ne n en-6
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e ikl -i(Wit - * x ) in(8 - 6 1) 1 .'

- - e Lemv n

ek E -i(wt-kx) ()

m+ o ye 0 0g XeineO 0(7

- • _ eE -i(w t - k x)|" : -t_ . e .IT -0 __o_0 g
X-- E x w e o

C^

whr " J en(x n Jo - i y k P Jo'), (8)
n n n

00

where J ni(k P ), J (kor)) J ( ) W pieoe h
wh n n I n' n1

Bessel function denotes the derivative with respect to its argument, 6 0is

the angle between E and x axis, 6 between kI and x axis and 61 between

k and x axis. Now onwards we shall assume that k = 0 for the Bernstein
lii

modes. Using Eqs. (4) - (8) in Eq. (3), we obtain the linear response,

ev E f0  -i6 i
fO ol 0 o 0 0 0[Jn-i +l
n 2Ti(w - nuc n- n+

e n fo
f c 0 3

n T(W - nu ) n

e¢1 nc fo n (9)

n T(u1 -nC) (9)

where we have assumed f0 to be Maxwellian at temperature T. For the nonlinear0

response we get,

i(w - nwe)i NL  e elik

cn 2m- kly 01 z

f + (E k -k E )J_ f] e 1

n-i oy lx y ox n

ev E -16 0 o l

(J_ e 0 +J'1 i 0
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-i(n 1 )6 + iewl tj _0_Y__ei6 19t

e +2 nt~ 1

eE -1.6 16
0 (o 0  J,+ e )i(n- . f

41mv t Zi-i .- n-k

e e if 0 i(n - 9.)
eE2mv t.  n-

eE o i t~ok i p Jo) e-i(n-

2mw t x oX y t

ek E -i(n- )i (0
1 O0 oy J i(n - t)e f(0
n-i 2mWo k £

First, let us mention here that in the limit of ko 0 (dipole pump), fN

0 NL

is greatly simplified. However, the nonlinear density perturbationn

obtained from this after carrying out the v1 integration, vanishes, identi-

cally. In the next approximation we retain terms that go linearly with ko

and possess resonant denominators, then we obtain

NL in6 NL
n = 1 2 Jv~ :i~ dv _Win e f

2 0( W 60+ 61)

0 1e c9 e

and 11is the modified Bessel function of argument b. Similarly, one

obtains,

n N an 0 e E lk e )2d (bI e-b) (12)
1 0 ~~81Tm(w -wC)2d 1

Using Eqs. (11) and (12) in the Poisson's equation, we get the following

nonlinear dispersion relation
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1 - / (13)

where p is coupling coefficient and c, c1 are the dielectric functions

', at (,k), (l~kl)

2 2 2 2
W ) 2 e+E----k- 1  k I 2 

(14)
k2v2 16m2 (W-W) 4 [ b I
e c

2w2  -b WI1e-
C~ 0 - 1 1 e(5

2 2 0ll I.(5

Using the linear dispersion relation (E = 0) for the Bernstein mode, one

may take

W A cW e-b /( -b b 2/ 21 2 1le-b/bwW- c 1 0  c p p 1  /

and hence

2 4

4 c (b/2) ; (16)"-4c2  4

u eEo1/m c .  In writing Eq. (16) we have assumed b > 1. Following

Liu, the convective amplification of the decay waves from Eq. (13) can be

obtained as

2 w 4 k2L
A (/[-~-~ k - k - u -c n 3

kx Akl l x k )] 4c2 (4  ko 0 (b/2)
P

2 2 5 2
Taking kIve/Wc "3,v/W c  10- , k L1/k 0 10 k 3 x 10 and expressing

p in KW/cm 2, we get

w 4
A 0.3(-c) p

p
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2
Thus, the threshold power for two Bernstein mode decay is =200 W/cm for

(c/W/p 2. For shorter wavelength modes (i.e. larger ki and larger b)

the threshold power can be further reduced. However, one can not reduce

the wavelength to very small values without considering the collisional

effects.

,I



III. DECAY INSTABILITY IN PLT

The decay modes for a pump around w 0 w possess long wavelengths0 C

k pe < 1 (except for the case of decay into a Bernstein mode and a low

frequency quasimode which has been studied by Ott et al. 4 in the dipole

approximation) and hence, fluid theory can be employed to obtain the

nonlinear response of electrons. Again, we consider the propagation

of the extraordinary pump wave [cf. Eqs. (1) and (2)] along x asix in

the tokamak, with a static magnetic field in the z direction. The linear

response of the pump may be written as

V =-u
ox

2 2
"3 - W

v = -iu o
oy W C"3o

ew E
c oy

u=2 2
k v 2 2

0 o ox o u
n =n B =uk Bno o oz o 2 s

co

2 2 2W W + W (17)
u p c

4.

The pump decays into two electrostatic waves 0(w,k) and 1jll 1 ). The

response of electrons to these fields is governed by the equations of

motion and continuity,

an + V . (nv) 0 (18)
at -

,I
av e e4.
- v = ve e-x _ T Vn (19)

at m mc n
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Expanding

0 /
n no( o ( ) + n(,) + nl( Wk 1)

V3 v-+ + v3
V = V o + V + l

= 0  1

S=(B s + B o)Z

the linear response at wlkl may be written as

: e~~m1 ll- i~l1 x we)

VL = m(2 2
mc - i

1 ilz
Vlz mW1

a 2 2
n el k k 2

m + 2 2 .  
(20)

W1 1 c

To obtain the nonlinear response we consider two cases.

A) < k v
' ze

In this limit, the low frequency nonlinearity arises through the

parallel ponderomotive force Fpz = -iek zp*

p fvo "L "

-- 1kl •v (21)

and hence the low frequency density perturbation comes out to be
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(22
[n 4 Xe(O + p) (22)

2 22

where Xe k 1v +ke Z-- -v-- Employing Eqs. (17) and (22), the

e 2 2 k v kv
kv e ze zee

nonlinear contribution to the high frequency density perturbation turns out

to be

NL k 1 Vo
n =
1 2wnI - 21 r

2
kre i k "v ( +  p) (23)

where * denotes the complex conjugate. Using Eqs. (22) and (23) in the

Poisson's equation, we obtain Eq. (13) as the nonlinear dispersion relation

with the following coupling coefficient,

2  2
-X e(l + X) 42 2 kl ' ; (24)

4k l 1  11

Xi is the ion susceptibility at (w,k).

B) w > kz ve

In this limit, w and wI may be comparable and the nonlinearity in

the response at both the frequencies arises through the equation of con-

tinuity as well as the ponderomotive force. On writing equations similar

to Eqs. (20) for the linear response at (w,t) evaluating the nonlinear density

perturbations and employing the Poisson's equation, we obtain

4

- P - a2 uu*V k 2k I2ClL
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k klx k kx  i(w 2 w2(2w-wal z lx + o +  0 p - k
1 Wl W W Ac W oWW 1

1 k

2 2 [-(Wk c y2w(w 1)  c

2 2

+ k 2(k +1 k _ 1 2 2 2
c 1 i (c 2)'

-2 2 2tw - y

0 u 0 c

2w w k 0 W Wc k. " . + iW1+ W 0k)
2 2 _2 W kk

+ k+10 p(ky + i ckx c ky]i
Co O

2 2

+1 k -- W2

(kokywc) 1 .o
1 (okkl - k 0 + - (k +yi c 2 I-Yx oyc 0 ox

a a2 = al tI  1 -> Wtk W t0 <-> -W ,-4 ) (25)

The dispersion relation is again given by Eq. (13). Now we discuss some

specific channels of decay.

i) Two Lower Hybrid Waves.

The linear dispersion relation for lower hybrid waves, viz.,

k 2m. 1/2
2 1 2 1 4 2 2 z I
WO = u - 2 [wu - 4w piw c(I + --- )]

k m

tells that w < min(W, ), hence the channel of decay involving two lower

hybrid waves is possible for 2wp > w O . The decay waves can have either

k >> k or k < ko . In the former case w w /2,
0 eu 0 0

2 4 4k uu* W k~ 4 - _p Z4 2 4 k4

0o 0
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and the convective amplification is

2 k2
A= 0.1 u  k kL2 2 k n

c k o
x

where we have assumed w 0- w c (which corresponds to k2/k2  1/3 for a lower

hybrid wave of w = c /2. For PLT parameters, B° = 35 kG, Ln '% 10 cm,

-l' 5 2 2 2!2.
k 18 cm- , k = 20 ko, k/kx  10, A = 8 x 10 u /c 1.6 at 200 KW/cm

2Thus the threshold for this decay is -150 KW/cm

For k < ko, the decay wave frequencies may be considerably different

from each other. The high frequency lower hybrid wave (wl,kl) has to be
I2 2

close to wo i.e., wp c, kiz >> kl2; the latter inequality is satisfied

for k1  k x k . The amplification comes out to bex o

W kk kL 2
A _- uu z o n 0.1 - kL2 2 2 4 8 -nk k I Wo Wp Pc

This requires threshold powers above 500 KW/cm 2 for PLT parameters.

The decay instability of the ordinary pump wave possess almost the

same amplification.

ii) Lower Hybrid and Ion Cyclotron Waves.

The ion cyclotron wave,

-bi

= c ( I + 1i IT)
ci 1+ TiT

has w =wi, w - ci kzvi, w < kzve, klpe < 1 and this decay channel is

possible only for an extraordinary pump in between -x0 < x < 0 (where

2 2
Wc > Wo) and when w P> wo The resonance condition gives kI >> kz >> kli

i.e., k , 2 k 0 The cnvective amplification turns out to be
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2
A=--kL

16v y
e

2
and the threshold power >200 KW/cm for PLT parameters.

IMi) Lower Hybrid Mode and quasimode.

When the parallel phase velocity of the lower frequency lower hybrid

wave equals the electron thermal speed, w =k zve' it is strongly Landau

damped; the higher frequency lower hybrid wave is weakly damped. Solving

Eq. (13) with w = w + iy, c iy the homogeneous medium growth rate

turns out to be

I m(/E)

2
-3 u= 3x w -

c

which is \104 at 200 KW/cm 2 and PLT parameters. This growth rate is extremely

low to substantially emplify the daughter wave in one pass through the region

of parametric resonance.

iv) Filamentation Instability.

The analysis developed here is applicable only to three wave decay

processes. However, one could initially include the upper sideband

(W + w o + t ) in the analysis to study four wave processes. The fila-

mentation instability of the ordinary mode in tokamak, with the perturbation

along z axis (1 11 z), is not to be affected by the magnetic field and the

amplification factor turns out to be

W
A P -u kL

Wo Ve n

which again requires threshold power -200 KW/cm
2 for PLT parameters. The

--III
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filamentation and modulation instabilities of the extraordinary mode require

much higher power densities.

1

i IIII9 I i '
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IV. DISCUSSION

2The presently employed microwave power densities (> 200 Watt/cm2)

in EBT seem to be sufficient to parametrically excite two electron Bernstein

modes at the second harmonic cyclotron layer, as long as Te 200 eV. The

Bernstein modes are strongly absorbed through cyclotron absorption and may

account for the formation of the hot electron annulus. The coupling co-

efficient for this decay vanishes in the dipole approximation.

The situation in large tokamaks where T > 1 keV and B > 30 kG is quite

unfavorable for parametric instabilities. The most prominant channel of

decay seems to be the one involving two lower hybrid waves of short wave-

lengths (k >> k, W = Wo/2), however, the convective threshold for this
0 0

channel is '150 KW/cm 2 which is orders of magnitude higher than the presently

employed power densities.
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